Ventana Research Analyst Perspectives

Dataiku Streamlines AI/ML

Posted by David Menninger on Apr 14, 2021 3:00:00 AM

Organizations are becoming more and more data-driven and are looking for ways to accelerate the usage of artificial intelligence and machine learning (AI/ML). Developing and deploying AI/ML models can be complicated in many ways, often involving different tools and services to manage these solutions from end to end. Accessing and preparing data is the most common challenge organizations face in this process, and consequently, AI/ML vendors typically incorporate tools to address this part of the process. But there are many other steps in the process as well, such as coordinating the handoff between data scientists and IT or software engineers for deployment to production. This can potentially slow down the entire data-to-insights process. End-to-end platforms for AI offer the promise of simplifying these processes, allowing teams that work with data to improve organizational results.

Read More

Topics: business intelligence, Analytics, Collaboration, Data Governance, Data Preparation, Data, AI and Machine Learning

Process Mining: Improve Execution and Operations with Analytics

Posted by David Menninger on Apr 12, 2021 3:00:00 AM

Process-mining software isn’t exactly new, but it’s also not widely known in the software technology market. The discipline has been around for at least a decade, but is generating more interest these days with both specialist vendors and major enterprise software vendors offering process-mining products and services. We assert that through 2022, 1 in 4 organizations will look to streamline their operations by exploring process mining.

Read More

Topics: business intelligence, Analytics, Digital Technology, AI and Machine Learning

Informatica Continues to Evolve Data Management Platform

Posted by David Menninger on Apr 8, 2021 3:00:00 AM

Organizations are accelerating their digital transformation and looking for innovative ways to engage with customers in this new digital era of data management. The goal is to understand how to manage the growing volume of data in real time, across all sources and platforms, and use it to inform, streamline and transform internal operations. Over the years, the adoption of cloud computing has gained momentum with more and more organizations trying to make use of applications, data, analytics and self-service business intelligence (BI) tools running on top of cloud-computing infrastructure in order to improve efficiency. However, cloud adoption means living with a mix of on-premises and multiple cloud-based systems in a hybrid computing environment. The challenge is to ensure that processes, applications and data can still be integrated across cloud and on-premises systems. Our research shows that organizations still have a significant requirement for on-premises data management but also have a growing requirement for cloud-based capabilities.

Read More

Topics: business intelligence, embedded analytics, Analytics, Collaboration, Data Governance, Information Management, Internet of Things, Data, natural language processing, AI and Machine Learning

Introducing Precisely for Data Integrity

Posted by David Menninger on Jan 25, 2021 3:00:00 AM

Data is becoming more valuable and more important to organizations. At the same time, organizations have become more disciplined about the data on which they rely to ensure it is robust, accurate and governed properly. Without data integrity, organizations cannot trust the information produced by their data processes, and will be discouraged from using that data, resulting in inefficiencies and reduced effectiveness.

Read More

Topics: business intelligence, Analytics, Data Governance, Data Preparation, Information Management, Data, data lakes

Emerging Data Platforms Tackle Big Challenges

Posted by David Menninger on Jan 14, 2021 3:00:00 AM

Organizations are always looking to improve their ability to use data and AI to gain meaningful and actionable insights into their operations, services and customer needs. But unlocking value from data requires multiple analytics workloads, data science tools and machine learning algorithms to run against the same diverse data sets. Organizations still struggle with limited data visibility and insufficient insights, which are often caused by a multitude of reasons such as analytic workloads running independently, data spread across multiple data centers, data governance, etc. In our ongoing benchmark research project, we are researching the ways in which organizations work with big data and the challenges they face.

Read More

Topics: business intelligence, embedded analytics, Analytics, Collaboration, Data Governance, Data Preparation, Data, Information Management (IM), data lakes, AI and Machine Learning