Alteryx Inspire 2019, this year's user conference for Alteryx, drew around 4500 customers, partners, and prospects to Nashville’s Gaylord Opryland Resort & Convention Center in Tennessee last month. The strong attendance was a reflection of the strong growth Alteryx has experienced over the last year; roughly 50% growth year-over-year. This year's conference focused on Alteryx's evolution from data preparation to AI and machine learning, and both were front and center.
Big Data, Machine Learning and Alteryx Inspires 2019
Topics: Big Data, Data Science, alteryx, Machine Learning, Data Integration, Data Management, Alteryx Inspire
Operationalize Predictive Analytics for Significant Business Impact
One of the key findings in our latest benchmark research into predictive analytics is that companies are incorporating predictive analytics into their operational systems more often than was the case three years ago. The research found that companies are less inclined to purchase stand-alone predictive analytics tools (29% vs 44% three years ago) and more inclined to purchase predictive analytics built into business intelligence systems (23% vs 20%), applications (12% vs 8%), databases (9% vs 7%) and middleware (9% vs 2%). This trend is not surprising since operationalizing predictive analytics – that is, building predictive analytics directly into business process workflows – improves companies’ ability to gain competitive advantage: those that deploy predictive analytics within business processes are more likely to say they gain competitive advantage and improve revenue through predictive analytics than those that don’t.
Topics: Big Data, Microsoft, Predictive Analytics, SAS, Social Media, alteryx, Customer Performance, Operational Performance, Analytics, Business Analytics, Business Intelligence, Business Performance, Operational Intelligence, Oracle, Information Optimization, SPSS, Rapidminer
Business Case for Predictive Analytics is Simpler Than You Think
Our benchmark research into predictive analytics shows that lack of resources, including budget and skills, is the number-one business barrier to the effective deployment and use of predictive analytics; awareness – that is, an understanding of how to apply predictive analytics to business problems – is second. In order to secure resources and address awareness problems a business case needs to be created and communicated clearly wherever appropriate across the organization. A business case presents the reasoning for initiating a project or task. A compelling business case communicates the nature of the proposed project and the arguments, both quantified and unquantifiable, for its deployment.
Topics: Big Data, Microsoft, Predictive Analytics, SAS, Social Media, alteryx, Customer Performance, Operational Performance, Analytics, Business Analytics, Business Intelligence, Operational Intelligence, Oracle, Information Optimization, SPSS, Rapidminer
Data Preparation is Essential for Predictive Analytics
Our research into next-generation predictive analytics shows that along with not having enough skilled resources, which I discussed in my previous analysis, the inability to readily access and integrate data is a primary reason for dissatisfaction with predictive analytics (in 62% of participating organizations). Furthermore, this area consumes the most time in the predictive analytics process: The research finds that preparing data for analysis (40%) and accessing data (22%) are the parts of the predictive analysis process that create the most challenges for organizations. To allow more time for actual analysis, organizations must work to improve their data-related processes.
Topics: Big Data, Microsoft, Predictive Analytics, alteryx, Customer Performance, Operational Performance, Analytics, Business Analytics, Business Intelligence, Business Performance, Operational Intelligence, Oracle, Information Optimization
Skills Gap Challenges Potential of Predictive Analytics
The Performance Index analysis we performed as part of our next-generation predictive analytics benchmark research shows that only one in four organizations, those functioning at the highest Innovative level of performance, can use predictive analytics to compete effectively against others that use this technology less well. We analyze performance in detail in four dimensions (People, Process, Information and Technology), and for predictive analytics we find that organizations perform best in the Technology dimension, with 38 percent reaching the top Innovative level. This is often the case in our analyses, as organizations initially perform better in the details of selecting and managing new tools than in the other dimensions. Predictive analytics is not a new technology per se, but the difference is that it is becoming more common in business units, as I have written.
Topics: Big Data, Microsoft, Predictive Analytics, alteryx, Operational Performance Management (OPM), Customer Performance, Analytics, Business Analytics, Business Intelligence, Business Performance, Location Intelligence, Oracle, Information Optimization