Ventana Research Analyst Perspectives

Cloud Computing Realities Part 2: Hybrid and Multi-Cloud Architectures

Posted by David Menninger on Sep 27, 2022 3:00:00 AM

In my first perspective on cloud computing realities, I covered some of the cost considerations associated with cloud computing and how the cloud costing model may be different enough from on-premises models that some organizations are taken by surprise. In this perspective. I’d like to focus on realities of hybrid and multi-cloud deployments.

Read More

Topics: Cloud Computing, Digital Technology

Cloud Computing Realities – Part 1

Posted by David Menninger on Sep 1, 2022 3:00:00 AM

The migration to cloud is obvious. Organizations are adopting cloud computing for all variety of applications and use cases. Managed cloud services, commonly referred to as software as a service (SaaS), offer many benefits to organizations including significantly reduced labor costs for system administration and maintenance, as many of these costs are shifted to the software vendor. SaaS also provides organizations with faster time to value as they adopt new technologies by eliminating the need to acquire and configure hardware, and it also eliminates the need to install software. In fact, we assert that by 2025, nine in 10 organizations will be using multiple cloud applications in order to minimize the costs of administration and maintenance. Yet, there are some challenges associated with cloud computing I’d like to address in a series of Analyst Perspectives:

Read More

Topics: Cloud Computing, Digital Technology

Data-Driven Agenda for Organizations

Posted by Matt Aslett on Jul 21, 2022 3:00:00 AM

When joining Ventana Research, I noted that the need to be more data-driven has become a mantra among large and small organizations alike. Data-driven organizations stand to gain competitive advantage, responding faster to worker and customer demands for more innovative, data-rich applications and personalized experiences. Being data-driven is clearly something to aspire to. However, it is also a somewhat vague concept without clear definition. We know data-driven organizations when we see them — the likes of Airbnb, DoorDash, ING Bank, Netflix, Spotify, and Uber are often cited as examples — but it is not necessarily clear what separates the data-driven from the rest. Data has been used in decision-making processes for thousands of years, and no business operates without some form of data processing and analytics. As such, although many organizations may aspire to be more data-driven, identifying and defining the steps required to achieve that goal are not necessarily easy. In this Analyst Perspective, I will outline the four key traits that I believe are required for a company to be considered data-driven.

Read More

Topics: embedded analytics, Analytics, Business Intelligence, Data Governance, Data Integration, Data, Digital Technology, natural language processing, data lakes, AI and Machine Learning, data operations, Digital Business, Streaming Analytics, data platforms, Analytics & Data, Streaming Data & Events

TigerGraph Promotes Graph Database for Data Science with ML Workbench

Posted by Matt Aslett on Jul 14, 2022 3:00:00 AM

I recently wrote about the growing range of use cases for which NoSQL databases can be considered, given increased breadth and depth of functionality available from providers of the various non-relational data platforms. As I noted, one category of NoSQL databases — graph databases — are inherently suitable for use cases that rely on relationships, such as social media, fraud detection and recommendation engines, since the graph data model represents the entities and values and also the relationships between them. The native representation of relationships can also be significant in surfacing “features” for use in machine learning modeling. There has been a concerted effort in recent years by graph database providers, including TigerGraph, to encourage and facilitate the use of graph databases by data scientists to support the development, testing and deployment of machine learning models.

Read More

Topics: business intelligence, Analytics, Cloud Computing, Data, Digital Technology, AI and Machine Learning, data platforms, Analytics & Data

Ahana Offers Managed-Services Approach to Simplify Presto Adoption

Posted by Matt Aslett on Jun 29, 2022 3:00:00 AM

I previously described the concept of hydroanalytic data platforms, which combine the structured data processing and analytics acceleration capabilities associated with data warehousing with the low-cost and multi-structured data storage advantages of the data lake. One of the key enablers of this approach is interactive SQL query engine functionality, which facilitates the use of existing business intelligence (BI) and data science tools to analyze data in data lakes. Interactive SQL query engines have been in use for several years — many of the capabilities were initially used to accelerate analytics on Hadoop — but have evolved along with data lake initiatives to enable analysis of data in cloud object storage. The open source Presto project is one of the most prominent interactive SQL query engines and has been adopted by some of the largest digital-native organizations. Presto managed-services provider Ahana is on a mission to bring the advantages of Presto to the masses.

Read More

Topics: Analytics, Business Intelligence, Cloud Computing, Data, Digital Technology, data lakes, AI and Machine Learning, data operations, data platforms, Analytics & Data