Enterprises face a bewildering level of choice in relation to data platforms, as evidenced by the number of software providers and products assessed in our recent Data Platforms Buyers Guide. There are numerous data platform providers and products to choose from, but also a diverse array of functional and architectural options. Is the workload primarily operational or analytic? Will it be deployed on-premises or in the cloud? Should it be distributed or centralized? Data warehouse or data...
Read More
Topics:
data platforms,
AI and Machine Learning,
Data Intelligence,
Analytics and Data
I have written on multiple occasions about the increasing proportion of enterprises embracing the processing of streaming data and events alongside traditional batch-based data processing. I assert that, by 2026, more than three-quarters of enterprises’ standard information architectures will include streaming data and event processing, allowing enterprises to be more responsive and provide better customer experiences.
Read More
Topics:
data platforms,
Analytics & Data,
Streaming Data & Events,
AI and Machine Learning
I am happy to share insights gleaned from our latest Buyers Guide, an assessment of how well software providers’ offerings meet buyers’ requirements. The Data Platforms Ventana Research Buyers Guide is the distillation of a year of market and product research by ISG and Ventana Research.
Read More
Topics:
data platforms,
Analytics & Data,
operational data platforms,
Analytic Data Platforms
The emergence of generative artificial intelligence (GenAI) has significant implications at all levels of the technology stack, not least analytics and data products, which serve to support the development, training and deployment of GenAI models, and also stand to benefit from the advances in automation enabled by GenAI. The intersection of analytics and data and GenAI was a significant focus of the recent Google Cloud Next ’24 event. My colleague David Menninger has already outlined the key...
Read More
Topics:
Analytics,
AI,
natural language processing,
data platforms,
Generative AI,
AI and Machine Learning
I previously wrote about the potential for rapid adoption of the data lakehouse concept as enterprises combined the benefits of data lakes based on low-cost cloud object storage with the structured data processing functionality normally associated with data warehousing. By layering support for table formats, metadata management and transactional updates and deletes as well as query engine and data orchestration functionality on top of low-cost storage of both structured and unstructured data,...
Read More
Topics:
Analytics,
data platforms,
Analytics & Data
I recently wrote about the development, testing and deployment of data pipelines as a fundamental accelerator of data-driven strategies. As I explained in the 2023 Data Orchestration Buyers Guide, today’s analytics environments require agile data pipelines that can traverse multiple data-processing locations and evolve with business needs.
Read More
Topics:
Analytics,
data operations,
data platforms,
Analytics & Data,
Generative AI,
AI and Machine Learning,
Data Intelligence
I wrote recently about the role that data intelligence has in enabling enterprises to facilitate data democratization and the delivery of data as a product. Data intelligence provides a holistic view of how, when, and why data is produced and consumed across an enterprise, and by whom. This information can be used by data teams toensure business users and data analysts are provided with self-service access to data that is pertinent to their roles and requirements. Delivering data as a product...
Read More
Topics:
Analytics,
Data Ops,
data operations,
data platforms,
Analytics & Data,
AI and Machine Learning,
GenAI,
Data Intelligence
The development, testing and deployment of data pipelines is a fundamental accelerator of data-driven strategies, enabling enterprises to extract data from the operational applications and data platforms designed to run the business and load, integrate and transform it into the analytic data platforms and tools used to analyze the business. As I explained in our recent Data Pipelines Buyers Guide, data pipelines are essential to generating intelligence from data. Healthy data pipelines are...
Read More
Topics:
Analytics,
data operations,
data platforms,
Analytics & Data,
Generative AI,
AI and Machine Learning,
Data Intelligence
Cloud computing has had an enormous impact on the analytics and data industry in recent decades, with the on-demand provisioning of computational resources providing new opportunities for enterprises to lower costs and increase efficiency. Two-thirds of participants in Ventana Research’s Data Lakes Dynamic Insightsresearch are using a cloud-based environment as the primary data platform for analytics.
Read More
Topics:
Analytics,
AI,
data platforms,
Analytics & Data,
Generative AI,
AI and Machine Learning,
Data Intelligence
I have previously written about the impact of intelligent operational applications on the requirements for data platforms. Intelligent applications are used to run the business but also deliver personalization, recommendations and other features generated by machine learning and artificial intelligence. As such, they require a combination of operational and analytic processing functionality. The emergence of these intelligent applications does not eradicate the need for separate analysis of...
Read More
Topics:
Analytics,
Artificial intelligence,
data platforms,
Analytics & Data,
Generative AI,
AI and Machine Learning