Ventana Research Analyst Perspectives

Data-Driven Agenda for Organizations

Posted by Matt Aslett on Jul 21, 2022 3:00:00 AM

When joining Ventana Research, I noted that the need to be more data-driven has become a mantra among large and small organizations alike. Data-driven organizations stand to gain competitive advantage, responding faster to worker and customer demands for more innovative, data-rich applications and personalized experiences. Being data-driven is clearly something to aspire to. However, it is also a somewhat vague concept without clear definition. We know data-driven organizations when we see them — the likes of Airbnb, DoorDash, ING Bank, Netflix, Spotify, and Uber are often cited as examples — but it is not necessarily clear what separates the data-driven from the rest. Data has been used in decision-making processes for thousands of years, and no business operates without some form of data processing and analytics. As such, although many organizations may aspire to be more data-driven, identifying and defining the steps required to achieve that goal are not necessarily easy. In this Analyst Perspective, I will outline the four key traits that I believe are required for a company to be considered data-driven.

Read More

Topics: embedded analytics, Analytics, Business Intelligence, Data Governance, Data Integration, Data, Digital Technology, natural language processing, data lakes, AI and Machine Learning, data operations, Digital Business, Streaming Analytics, data platforms, Analytics & Data, Streaming Data & Events

TigerGraph Promotes Graph Database for Data Science with ML Workbench

Posted by Matt Aslett on Jul 14, 2022 3:00:00 AM

I recently wrote about the growing range of use cases for which NoSQL databases can be considered, given increased breadth and depth of functionality available from providers of the various non-relational data platforms. As I noted, one category of NoSQL databases — graph databases — are inherently suitable for use cases that rely on relationships, such as social media, fraud detection and recommendation engines, since the graph data model represents the entities and values and also the relationships between them. The native representation of relationships can also be significant in surfacing “features” for use in machine learning modeling. There has been a concerted effort in recent years by graph database providers, including TigerGraph, to encourage and facilitate the use of graph databases by data scientists to support the development, testing and deployment of machine learning models.

Read More

Topics: business intelligence, Analytics, Cloud Computing, Data, Digital Technology, AI and Machine Learning, data platforms, Analytics & Data

Ahana Offers Managed-Services Approach to Simplify Presto Adoption

Posted by Matt Aslett on Jun 29, 2022 3:00:00 AM

I previously described the concept of hydroanalytic data platforms, which combine the structured data processing and analytics acceleration capabilities associated with data warehousing with the low-cost and multi-structured data storage advantages of the data lake. One of the key enablers of this approach is interactive SQL query engine functionality, which facilitates the use of existing business intelligence (BI) and data science tools to analyze data in data lakes. Interactive SQL query engines have been in use for several years — many of the capabilities were initially used to accelerate analytics on Hadoop — but have evolved along with data lake initiatives to enable analysis of data in cloud object storage. The open source Presto project is one of the most prominent interactive SQL query engines and has been adopted by some of the largest digital-native organizations. Presto managed-services provider Ahana is on a mission to bring the advantages of Presto to the masses.

Read More

Topics: Analytics, Business Intelligence, Cloud Computing, Data, Digital Technology, data lakes, AI and Machine Learning, data operations, data platforms, Analytics & Data

Dremio Embraces Data Lakehouse with Cloud Launch

Posted by Matt Aslett on Jun 24, 2022 3:00:00 AM

I previously explained how the data lakehouse is one of two primary approaches being adopted to deliver what I have called a hydroanalytic data platform. Hydroanalytics involves the combination of data warehouse and data lake functionality to enable and accelerate analysis of data in cloud storage services. The term data lakehouse has been rapidly adopted by several vendors in recent years to describe an environment in which data warehousing functionality is integrated into the data lake environment, rather than coexisting alongside. One of the vendors that has embraced the data lakehouse concept and terminology is Dremio, which recently launched the general availability of its Dremio Cloud data lakehouse platform.

Read More

Topics: business intelligence, Analytics, Data, data lakes, data platforms

MariaDB Offers One Database for All Workloads

Posted by Matt Aslett on Jun 14, 2022 3:00:00 AM

As I recently described, it is anticipated that the majority of database workloads will continue to be served by specialist data platforms targeting operational and analytic workloads, albeit with growing demand for hybrid data processing use-cases and functionality. Specialist operational and analytic data platforms have historically been the since preferred option, but there have always been general-purpose databases that could be used for both analytic and operational workloads, with tuning and extensions to meet the specific requirements of each.

Read More

Topics: Analytics, Business Intelligence, Cloud Computing, Data, Digital Technology, data platforms, Analytics & Data