Ventana Research Analyst Perspectives

About the Analyst

David Menninger

David is responsible for the overall research direction of data, information and analytics technologies at Ventana Research covering major areas including Analytics, Big Data, Business Intelligence and Information Management along with the additional specific research categories including Information Applications, IT Performance Management, Location Intelligence, Operational Intelligence and IoT, and Data Science. David is also responsible for examining the role of cloud computing, collaboration and mobile technologies as they affect these areas. David brings to Ventana Research over twenty-five years of experience, through which he has marketed and brought to market some of the leading edge technologies for helping organizations analyze data to support a range of action-taking and decision-making processes. Prior to joining Ventana Research, David was the Head of Business Development & Strategy at Pivotal a division of EMC, VP of Marketing and Product Management at Vertica Systems, VP of Marketing and Product Management at Oracle, Applix, InforSense and IRI Software. David earned his MS in Business from Bentley University and a BS in Economics from University of Pennsylvania.

Recent Posts

DataRobot Automates and Simplifies AI/ML

Posted by David Menninger on May 5, 2021 3:00:00 AM

Machine learning is valuable for organizations, but it can be hard to deploy. Our Machine Learning Dynamic Insights research identifies that not having enough skilled resources and difficulty building and maintaining ML systems are pressing challenges organizations face in applying ML. Traditional ML model development is resource-intensive, requiring significant domain knowledge and time to produce and compare dozens of models. And as the number of ML models grow, their management becomes difficult. By bringing automation to ML, organizations can reduce the time it takes to create production-ready ML models. AutoML can also enable organizations to make data science initiatives more accessible across the organization.

Read More

Topics: embedded analytics, Analytics, Business Intelligence, Collaboration, Data Governance, Data Preparation, Data, AI and Machine Learning

Incorta Streamlines Analytics with Direct Data Access

Posted by David Menninger on Apr 21, 2021 3:00:00 AM

The amount of data flowing into organizations is growing exponentially, creating a need to process more data more quickly than ever before. Our Data Preparation Benchmark Research shows that accessing and preparing data continues to be the most time-consuming part of making data available for analysis. This can potentially slow down the organizational functions which depend on the analysis results. Trying to get ahead of the backlog with incremental improvements to existing approaches and traditional technologies alone can be frustrating.

Read More

Topics: business intelligence, embedded analytics, Analytics, Collaboration, Data Governance, Data Preparation, Data, Information Management (IM), data lakes

Dataiku Streamlines AI/ML

Posted by David Menninger on Apr 14, 2021 3:00:00 AM

Organizations are becoming more and more data-driven and are looking for ways to accelerate the usage of artificial intelligence and machine learning (AI/ML). Developing and deploying AI/ML models can be complicated in many ways, often involving different tools and services to manage these solutions from end to end. Accessing and preparing data is the most common challenge organizations face in this process, and consequently, AI/ML vendors typically incorporate tools to address this part of the process. But there are many other steps in the process as well, such as coordinating the handoff between data scientists and IT or software engineers for deployment to production. This can potentially slow down the entire data-to-insights process. End-to-end platforms for AI offer the promise of simplifying these processes, allowing teams that work with data to improve organizational results.

Read More

Topics: business intelligence, Analytics, Collaboration, Data Governance, Data Preparation, Data, AI and Machine Learning

Process Mining: Improve Execution and Operations with Analytics

Posted by David Menninger on Apr 12, 2021 3:00:00 AM

Process-mining software isn’t exactly new, but it’s also not widely known in the software technology market. The discipline has been around for at least a decade, but is generating more interest these days with both specialist vendors and major enterprise software vendors offering process-mining products and services. We assert that through 2022, 1 in 4 organizations will look to streamline their operations by exploring process mining.

Read More

Topics: business intelligence, Analytics, Digital Technology, AI and Machine Learning

Informatica Continues to Evolve Data Management Platform

Posted by David Menninger on Apr 8, 2021 3:00:00 AM

Organizations are accelerating their digital transformation and looking for innovative ways to engage with customers in this new digital era of data management. The goal is to understand how to manage the growing volume of data in real time, across all sources and platforms, and use it to inform, streamline and transform internal operations. Over the years, the adoption of cloud computing has gained momentum with more and more organizations trying to make use of applications, data, analytics and self-service business intelligence (BI) tools running on top of cloud-computing infrastructure in order to improve efficiency. However, cloud adoption means living with a mix of on-premises and multiple cloud-based systems in a hybrid computing environment. The challenge is to ensure that processes, applications and data can still be integrated across cloud and on-premises systems. Our research shows that organizations still have a significant requirement for on-premises data management but also have a growing requirement for cloud-based capabilities.

Read More

Topics: business intelligence, embedded analytics, Analytics, Collaboration, Data Governance, Information Management, Internet of Things, Data, natural language processing, AI and Machine Learning