Ventana Research Analyst Perspectives

About the Analyst

David Menninger

David is responsible for the overall research direction of data, information and analytics technologies at Ventana Research covering major areas including Analytics, Big Data, Business Intelligence and Information Management along with the additional specific research categories including Information Applications, IT Performance Management, Location Intelligence, Operational Intelligence and IoT, and Data Science. David is also responsible for examining the role of cloud computing, collaboration and mobile technologies as they affect these areas. David brings to Ventana Research over twenty-five years of experience, through which he has marketed and brought to market some of the leading edge technologies for helping organizations analyze data to support a range of action-taking and decision-making processes. Prior to joining Ventana Research, David was the Head of Business Development & Strategy at Pivotal a division of EMC, VP of Marketing and Product Management at Vertica Systems, VP of Marketing and Product Management at Oracle, Applix, InforSense and IRI Software. David earned his MS in Business from Bentley University and a BS in Economics from University of Pennsylvania.

Recent Posts

Make Data and Information Management Work for You in 2018

Posted by David Menninger on Feb 23, 2018 6:00:00 AM

We at Ventana Research recently published our research agendas for 2018. The world of data and information management continues to evolve, as does our research on the use of these technologies to improve your organization’s operations. Relational databases are no longer the only viable enterprise data store as more organizations adopt a polyglot database infrastructure. And while their exact form may still be changing, as I have recently written, big data technologies are here to stay. Our Data and Analytics in the Cloud Benchmark Research indicates that an increasing number of organizations are opting for cloud-based deployments: A modern data infrastructure includes a hybrid of on-premises and cloud deployments for 44 percent of organizations. Our upcoming research will track how these changes are affecting data- and information-management processes.

Read More

Topics: Data Governance, Information Management, Data, blockchain

Research Agenda Explores Evolving World of Analytics in 2018

Posted by David Menninger on Feb 15, 2018 6:48:42 AM

We at Ventana Research recently published our research agendas for 2018. Analytics and business intelligence are evolving and so is our research on their use across practice areas. Earlier research has shown that analytics can deliver significant value to organizations; for example, our predictive analytics research shows that 57 percent of organizations reported achieving a competitive advantage and half created new revenue opportunities with predictive analytics. Waves of investment in self-service analytics have propelled the market for analytics tools, significantly empowering line-of-business organizations to create their own analytics and set their own analytic priorities. But organizations are also beginning to recognize some of the limitations of current analytics implementations – for self-service, for example. Our Data Preparation Benchmark Research reveals that fewer than half (42%) of organizations are comfortable allowing business users to work with data not prepared by IT. Our research this year will continue to explore both the successes and challenges organizations face as they continue to use analytics and BI.

Read More

Topics: Machine Learning, Analytics, Business Intelligence, Collaboration, Internet of Things, IOT, Artificial intelligence, natural language processing, Natural Language Generation

The Untapped Potential of Data Preparation

Posted by David Menninger on Dec 29, 2017 5:53:44 AM

Ventana Research recently published the findings of our benchmark research on Data Preparation, which examines the practices organizations use to accomplish data preparation. We view data preparation as a sequence of steps: identifying, locating and then accessing the data; aggregating data from different sources; and enriching, transforming and cleaning it to create a single uniform data set. Using data to accomplish organizational goals requires that it be prepared for use; to do this job properly, businesses need flexible tools that enable them to enrich the context of data drawn from multiple sources and collaborate on its preparation as well as ensure security and consistency. Users of data preparation tools range from analysts to operations professionals in the lines of business to IT professionals.

Read More

Topics: Big Data, Analytics, Data Preparation

SAP Data Hub Orchestrates Data for Business and IT

Posted by David Menninger on Dec 14, 2017 8:22:13 AM

I recently attended SAP TechEd in Las Vegas to hear the latest from the company regarding its analytics and business intelligence offerings as well as its data management platform. The company used the event to launch SAP Data Hub and made several other data and analytics announcements that I’ll cover below.

Read More

Topics: Big Data, SAP, Machine Learning, Analytics, Data Preparation, SAP TechEd

At Strata Data NY, Focus is on Machine Learning and AI

Posted by David Menninger on Nov 19, 2017 7:30:13 AM

The Strata Data Conference is changing and it’s changing in a good way. At the recent Strata Data Conference in New York, Mike Olson, chief strategy officer at Cloudera, which co-sponsored the event, commented that at prior events we used to talk about the “Hadoop zoo animals,” meaning the various components of the Hadoop ecosystem of which I have written previously. Following last fall’s Strata event, I observed that the conference was evolving to focus on the use of data. Advancing that evolution, this year’s event focused on a particular type of usage: artificial intelligence (AI) and machine learning. The evolution from a focus on zoo animals to a focus on business value using advanced analytics shows further maturation of the big data market.

Read More

Topics: Big Data, Machine Learning, Analytics, Hadoop, Artificial intelligence