A predictive finance department is one that can command technology to be more forward-looking and action-oriented while still fulfilling its core role of handling the financial elements of its organization including accounting, treasury and corporate finance. Beyond just automating rote tasks, technology also facilitates a shift toward becoming a predictive finance organization. Greater amounts of information, now available in near real time, and the increasing use of artificial intelligence...
Read More
Topics:
Office of Finance,
Business Intelligence,
Data Management,
Business Planning,
Financial Performance Management,
ERP and Continuous Accounting,
digital finance,
AI & Machine Learning
I have recently written about the organizational and cultural aspects of being data-driven, and the potential advantages data-driven organizations stand to gain by responding faster to worker and customer demands for more innovative, data-rich applications and personalized experiences. I have also explained that data-driven processes require more agile, continuous data processing, with an increased focus on extract, load and transform processes — as well as change data capture and automation...
Read More
Topics:
Cloud Computing,
Data Management,
Data,
data operations,
Analytics & Data
Organizations are collecting data from multiple data sources and a variety of systems to enrich their analytics and business intelligence (BI). But collecting data is only half of the equation. As the data grows, it becomes challenging to find the right data at the right time. Many organizations can’t take full advantage of their data lakes because they don’t know what data actually exists. Also, there are more regulations and compliance requirements than ever before. It is critical for...
Read More
Topics:
Business Intelligence,
Data Governance,
Data Management,
data operations,
AI & Machine Learning
The data catalog has become an integral component of organizational data strategies over the past decade, serving as a conduit for good data governance and facilitating self-service analytics initiatives. The data catalog has become so important, in fact, that it is easy to forget that just 10 years ago it did not exist in terms of a standalone product category. Metadata-based data management functionality has had a role to play within products for data governance and business intelligence for...
Read More
Topics:
business intelligence,
Data Governance,
Data Management,
Data,
data operations,
Analytics & Data
The analytics and business intelligence market landscape continues to grow as more organizations seek robust tools and capabilities to visualize and better understand data. BI systems are used to perform data analysis, identify market trends and opportunities and streamline business processes. They can collect and combine data from internal and external systems to present a holistic view.
Read More
Topics:
Analytics,
Business Intelligence,
Data Governance,
Data Management,
AI & Machine Learning,
Analytics & Data
I have recently written about the importance of healthy data pipelines to ensure data is integrated and processed in the sequence required to generate business intelligence, and the need for data pipelines to be agile in the context of real-time data processing requirements. Data engineers, who are responsible for monitoring, managing and maintaining data pipelines, are under increasing pressure to deliver high-performance and flexible data integration and processing pipelines that are capable...
Read More
Topics:
Big Data,
Cloud Computing,
Data Management,
Data,
data operations
We’ve recently published our latest Benchmark Research on Data Governance and it’s fair to say, “you’ve come a long way, baby.” Many of you reading this weren’t around when that phrase was introduced in 1968 to promote Virginia Slims cigarettes, but you may have heard the phrase because it went on to become a part of popular culture. We’ve learned a lot about cigarettes since then, and we’ve learned a lot about data governance, too.
Read More
Topics:
Big Data,
Data Governance,
Data Management,
Analytics & Data
A few years ago – somewhat tongue in cheek – I began using the term “data pantry” to describe a type of data store that’s part of a business application platform, created for a specific set of users and use cases. It’s a data pantry because, unlike a general-purpose data store such as a data warehouse, everything the user needs is readily available and easily accessible, with labels that are immediately recognized and understood.
Read More
Topics:
Data Management,
Business Planning,
Financial Performance Management,
ERP and Continuous Accounting,
digital finance,
AI & Machine Learning
Organizations are continuously increasing the use of analytics and business intelligence to turn data into meaningful and actionable insights. Our Analytics and Data Benchmark Research shows some of the benefits of using analytics: Improved efficiency in business processes, improved communication and gaining a competitive edge in the market top the list. With a unified BI system, organizations can have a comprehensive view of all organizational data to better manage processes and identify...
Read More
Topics:
business intelligence,
embedded analytics,
Data Governance,
Data Management,
natural language processing,
data operations,
Streaming Analytics,
AI & Machine Learning,
operational data platforms
I’ve never been a fan of talking about semantic models because most of the workforce probably doesn’t understand what they are, or doesn’t recognize them by name. But the findings in our recent Analytics and Data Benchmark Research have changed my mind. The research shows how important a semantic model can be to the success of data and analytics processes. Organizations that have successfully implemented a semantic model are more than twice as likely to report satisfaction with analytics (77%)...
Read More
Topics:
Business Intelligence,
Data Management,
data operations,
AI & Machine Learning,
Analytics & Data,
semantic model