Analyst Perspectives

Earlier this year, I wrote about the increasing importance of data observability, an emerging product category that takes advantage of machine learning (ML) and Data Operations (DataOps) to automate the monitoring of data used for analytics projects to ensure its quality and lineage. Monitoring the quality and lineage of data is nothing new. Manual tools exist to ensure that it is complete, valid and consistent, as well as relevant and free from duplication. Data observability vendors,...

Read More

Topics: Business Intelligence, Cloud Computing, Data Management, Data, data operations

One of the most significant considerations when choosing an analytic data platform is performance. As organizations compete to benefit most from being data-driven, the lower the time to insight the better. As data practitioners have learnt over time, however, lowering time to insight is about more than just high-performance queries. There are opportunities to improve time to insight throughout the analytics life cycle, which starts with data ingestion and integration, includes data preparation...

Read More

Topics: Business Intelligence, Data, data operations, analytic data platforms, AI and Machine Learning

Embedded business intelligence (BI) continues to transform the business landscape, enabling organizations to quickly interpret data and convert it into actionable insights. It allows organizations to extract information in real time and answer wide-ranging business questions. Embedding analytics helps tackle the issue of extracting information from data which is a time-consuming process. Our research shows organizations spend more time cleaning and optimizing data for analysis rather than...

Read More

Topics: embedded analytics, Analytics, Business Intelligence, natural language processing, Streaming Analytics, AI and Machine Learning

In today’s data-driven world, organizations need real-time access to up-to-date, high-quality data and analysis to keep pace with changing market dynamics and make better strategic decisions. By mining meaningful insights from enterprise data quickly, they gain a competitive advantage in the market. Yet, organizations face a multitude of challenges when transitioning into an analytics-driven enterprise. Our Analytics and Data Benchmark Research shows that more than one-quarter of organizations...

Read More

Topics: embedded analytics, Analytics, Business Intelligence, IBM, IBM Watson, AI and Machine Learning

The starting point of an era is never precise and rarely conforms to neat calendar delineations. For example, the start of the 20th century is associated with the outbreak of war in 1914. So I expect that decades from now, the consensus will hold that what became known as the 21st century began in the year 2020, with the pandemic serving as a catalyst that accelerated already existing trends and forced changes to prevailing norms and practices. This and other disruptive events that have...

Read More

Topics: Office of Finance, Business Intelligence, Business Planning, Financial Performance Management, AI and Machine Learning

IBM Planning Analytics with Watson is a comprehensive, cloud-based business planning application that supports what Ventana Research calls integrated business planning. We coined this term in 2007 to describe a high-participation approach to business planning that integrates strategy, operations and finance. Our Next Generation Business Planning Benchmark Research demonstrated the value of IBP: Organizations that link planning processes get better results. Sixty-six percent of organizations...

Read More

Topics: Predictive Analytics, Office of Finance, embedded analytics, Business Intelligence, Business Planning, Financial Performance Management, Watson, Digital transformation, AI and Machine Learning

If you’ve ever been to London, you are probably familiar with the announcements on the London Underground to “mind the gap” between the trains and the platform. I suggest we also need to mind the gap between data and analytics. These worlds are often disconnected in organizations and, as a result, it limits their effectiveness and agility.

Read More

Topics: embedded analytics, Analytics, Business Intelligence, Data Governance, Data Management, data operations, Analytics and Data

I have previously written about growing interest in the data lakehouse as one of the design patterns for delivering hydroanalytics analysis of data in a data lake. Many organizations have invested in data lakes as a relatively inexpensive way of storing large volumes of data from multiple enterprise applications and workloads, especially semi- and unstructured data that is unsuitable for storing and processing in a data warehouse. However, early data lake projects lacked structured data...

Read More

Topics: Business Intelligence, Data Governance, Data Management, Data, Streaming Data Events, analytic data platforms, AI and Machine Learning

I have written recently about the similarities and differences between data mesh and data fabric. The two are potentially complementary. Data mesh is an organizational and cultural approach to data ownership, access and governance. Data fabric is a technical approach to automating data management and data governance in a distributed architecture. There are various definitions of data fabric, but key elements include a data catalog for metadata-driven data governance and self-service, agile data...

Read More

Topics: Business Intelligence, Cloud Computing, Data Governance, Data Management, Data, data operations, AI and Machine Learning

Ventana Research’s Data Lakes Dynamics Insights research illustrates that while data lakes are fulfilling their promise of enabling organizations to economically store and process large volumes of raw data, data lake environments continue to evolve. Data lakes were initially based primarily on Apache Hadoop deployed on-premises but are now increasingly based on cloud object storage. Adopters are also shifting from data lakes based on homegrown scripts and code to open standards and open...

Read More

Topics: Business Intelligence, Data Governance, Data Management, Data, data operations, Streaming Data Events, analytic data platforms, Analytics and Data, AI and Machine Learning
JOIN OUR COMMUNITY

Our Analyst Perspective Policy

  • Ventana Research’s Analyst Perspectives are fact-based analysis and guidance on business, industry and technology vendor trends. Each Analyst Perspective presents the view of the analyst who is an established subject matter expert on new developments, business and technology trends, findings from our research, or best practice insights.

    Each is prepared and reviewed in accordance with Ventana Research’s strict standards for accuracy and objectivity and reviewed to ensure it delivers reliable and actionable insights. It is reviewed and edited by research management and is approved by the Chief Research Officer; no individual or organization outside of Ventana Research reviews any Analyst Perspective before it is published. If you have any issue with an Analyst Perspective, please email them to ChiefResearchOfficer@ventanaresearch.com

View Policy

Subscribe to Email Updates

Want more customized control? Fill out your community profile

Posts by Month

see all

Posts by Topic

see all


Analyst Perspectives Archive

See All

Close menu